Как реализован super() в Python 3?

Мне интересно, как реализован новый супер в Python 3.

Этот вопрос родился у меня в голове после того, как я сделал небольшой пример и получил странную ошибку. Я использую архитектуру компонентов Pyutilib (PCA) и сделал мой собственный метакласс для создания другого класса:

from pyutilib.component.core import implements, SingletonPlugin, PluginMeta, Interface

class IPass(Interface):
    pass

class __MetaPlugin(PluginMeta):
    def __new__(cls, name, baseClasses, classdict):
        print(cls, name, baseClasses, classdict)
        if baseClasses:
            baseClasses += (SingletonPlugin,)
        return PluginMeta.__new__(cls, name, baseClasses, classdict)

class Pass(metaclass=__MetaPlugin):
    implements(IPass)

    def __init__(self, inputs=[], outputs=[]):
        self.inputs = []
        self.outputs = []


class A(Pass):
    def __init__(self):
        print(self.__class__) # <class '__main__.A'>
        print(self.__class__.__class__) # <class '__main__.__MetaPlugin'>
        print(PluginMeta.__class__) # <class 'type'>
        super().__init__() # SystemError: super(): empty __class__ cell
        #Pass.__init__(self) - this works

a = A()

Я получаю следующую ошибку:

super().__init__() SystemError: super(): empty __class__ cell

Мне интересно, что именно делает super(), что он вызывает ошибку на super().__init__(), в то время как все self.__class__, self.__class__.__class__ и PluginMeta.__class__ существуют. Дополнительно "по старинке" - Pass.__init__(self) работает.


person Wojciech Danilo    schedule 29.10.2012    source источник
comment
SystemError может указывать на ошибку интерпретатора... какую версию Python вы используете? Можете ли вы сократить тестовый пример, включив только соответствующие классы из pyutilib?   -  person nneonneo    schedule 29.10.2012
comment
его 3.2.3 в Fedora 17. Я могу воспроизвести его, используя только классы SingletonPlugin, PluginMeta (удалив некоторый код из приведенного выше примера.   -  person Wojciech Danilo    schedule 29.10.2012
comment
Вы пытались использовать super в методе __new__ __MetaPlugin вместо __MetaPlugin.__new__?   -  person Bakuriu    schedule 30.10.2012
comment
вы имеете в виду вместо PluginMeta.__new__? да пробовал, результат тот же   -  person Wojciech Danilo    schedule 30.10.2012


Ответы (2)


Как реализован super()? Вот код для python3.3:

/* Cooperative 'super' */

typedef struct {
    PyObject_HEAD
    PyTypeObject *type;
    PyObject *obj;
    PyTypeObject *obj_type;
} superobject;

static PyMemberDef super_members[] = {
    {"__thisclass__", T_OBJECT, offsetof(superobject, type), READONLY,
     "the class invoking super()"},
    {"__self__",  T_OBJECT, offsetof(superobject, obj), READONLY,
     "the instance invoking super(); may be None"},
    {"__self_class__", T_OBJECT, offsetof(superobject, obj_type), READONLY,
     "the type of the instance invoking super(); may be None"},
    {0}
};

static void
super_dealloc(PyObject *self)
{
    superobject *su = (superobject *)self;

    _PyObject_GC_UNTRACK(self);
    Py_XDECREF(su->obj);
    Py_XDECREF(su->type);
    Py_XDECREF(su->obj_type);
    Py_TYPE(self)->tp_free(self);
}

static PyObject *
super_repr(PyObject *self)
{
    superobject *su = (superobject *)self;

    if (su->obj_type)
        return PyUnicode_FromFormat(
            "<super: <class '%s'>, <%s object>>",
            su->type ? su->type->tp_name : "NULL",
            su->obj_type->tp_name);
    else
        return PyUnicode_FromFormat(
            "<super: <class '%s'>, NULL>",
            su->type ? su->type->tp_name : "NULL");
}

static PyObject *
super_getattro(PyObject *self, PyObject *name)
{
    superobject *su = (superobject *)self;
    int skip = su->obj_type == NULL;

    if (!skip) {
        /* We want __class__ to return the class of the super object
           (i.e. super, or a subclass), not the class of su->obj. */
        skip = (PyUnicode_Check(name) &&
            PyUnicode_GET_LENGTH(name) == 9 &&
            PyUnicode_CompareWithASCIIString(name, "__class__") == 0);
    }

    if (!skip) {
        PyObject *mro, *res, *tmp, *dict;
        PyTypeObject *starttype;
        descrgetfunc f;
        Py_ssize_t i, n;

        starttype = su->obj_type;
        mro = starttype->tp_mro;

        if (mro == NULL)
            n = 0;
        else {
            assert(PyTuple_Check(mro));
            n = PyTuple_GET_SIZE(mro);
        }
        for (i = 0; i < n; i++) {
            if ((PyObject *)(su->type) == PyTuple_GET_ITEM(mro, i))
                break;
        }
        i++;
        res = NULL;
        /* keep a strong reference to mro because starttype->tp_mro can be
           replaced during PyDict_GetItem(dict, name)  */
        Py_INCREF(mro);
        for (; i < n; i++) {
            tmp = PyTuple_GET_ITEM(mro, i);
            if (PyType_Check(tmp))
                dict = ((PyTypeObject *)tmp)->tp_dict;
            else
                continue;
            res = PyDict_GetItem(dict, name);
            if (res != NULL) {
                Py_INCREF(res);
                f = Py_TYPE(res)->tp_descr_get;
                if (f != NULL) {
                    tmp = f(res,
                        /* Only pass 'obj' param if
                           this is instance-mode super
                           (See SF ID #743627)
                        */
                        (su->obj == (PyObject *)
                                    su->obj_type
                            ? (PyObject *)NULL
                            : su->obj),
                        (PyObject *)starttype);
                    Py_DECREF(res);
                    res = tmp;
                }
                Py_DECREF(mro);
                return res;
            }
        }
        Py_DECREF(mro);
    }
    return PyObject_GenericGetAttr(self, name);
}

static PyTypeObject *
supercheck(PyTypeObject *type, PyObject *obj)
{
    /* Check that a super() call makes sense.  Return a type object.

       obj can be a class, or an instance of one:

       - If it is a class, it must be a subclass of 'type'.      This case is
         used for class methods; the return value is obj.

       - If it is an instance, it must be an instance of 'type'.  This is
         the normal case; the return value is obj.__class__.

       But... when obj is an instance, we want to allow for the case where
       Py_TYPE(obj) is not a subclass of type, but obj.__class__ is!
       This will allow using super() with a proxy for obj.
    */

    /* Check for first bullet above (special case) */
    if (PyType_Check(obj) && PyType_IsSubtype((PyTypeObject *)obj, type)) {
        Py_INCREF(obj);
        return (PyTypeObject *)obj;
    }

    /* Normal case */
    if (PyType_IsSubtype(Py_TYPE(obj), type)) {
        Py_INCREF(Py_TYPE(obj));
        return Py_TYPE(obj);
    }
    else {
        /* Try the slow way */
        PyObject *class_attr;

        class_attr = _PyObject_GetAttrId(obj, &PyId___class__);
        if (class_attr != NULL &&
            PyType_Check(class_attr) &&
            (PyTypeObject *)class_attr != Py_TYPE(obj))
        {
            int ok = PyType_IsSubtype(
                (PyTypeObject *)class_attr, type);
            if (ok)
                return (PyTypeObject *)class_attr;
        }

        if (class_attr == NULL)
            PyErr_Clear();
        else
            Py_DECREF(class_attr);
    }

    PyErr_SetString(PyExc_TypeError,
                    "super(type, obj): "
                    "obj must be an instance or subtype of type");
    return NULL;
}

static PyObject *
super_descr_get(PyObject *self, PyObject *obj, PyObject *type)
{
    superobject *su = (superobject *)self;
    superobject *newobj;

    if (obj == NULL || obj == Py_None || su->obj != NULL) {
        /* Not binding to an object, or already bound */
        Py_INCREF(self);
        return self;
    }
    if (Py_TYPE(su) != &PySuper_Type)
        /* If su is an instance of a (strict) subclass of super,
           call its type */
        return PyObject_CallFunctionObjArgs((PyObject *)Py_TYPE(su),
                                            su->type, obj, NULL);
    else {
        /* Inline the common case */
        PyTypeObject *obj_type = supercheck(su->type, obj);
        if (obj_type == NULL)
            return NULL;
        newobj = (superobject *)PySuper_Type.tp_new(&PySuper_Type,
                                                 NULL, NULL);
        if (newobj == NULL)
            return NULL;
        Py_INCREF(su->type);
        Py_INCREF(obj);
        newobj->type = su->type;
        newobj->obj = obj;
        newobj->obj_type = obj_type;
        return (PyObject *)newobj;
    }
}

static int
super_init(PyObject *self, PyObject *args, PyObject *kwds)
{
    superobject *su = (superobject *)self;
    PyTypeObject *type = NULL;
    PyObject *obj = NULL;
    PyTypeObject *obj_type = NULL;

    if (!_PyArg_NoKeywords("super", kwds))
        return -1;
    if (!PyArg_ParseTuple(args, "|O!O:super", &PyType_Type, &type, &obj))
        return -1;

    if (type == NULL) {
        /* Call super(), without args -- fill in from __class__
           and first local variable on the stack. */
        PyFrameObject *f = PyThreadState_GET()->frame;
        PyCodeObject *co = f->f_code;
        Py_ssize_t i, n;
        if (co == NULL) {
            PyErr_SetString(PyExc_SystemError,
                            "super(): no code object");
            return -1;
        }
        if (co->co_argcount == 0) {
            PyErr_SetString(PyExc_SystemError,
                            "super(): no arguments");
            return -1;
        }
        obj = f->f_localsplus[0];
        if (obj == NULL) {
            PyErr_SetString(PyExc_SystemError,
                            "super(): arg[0] deleted");
            return -1;
        }
        if (co->co_freevars == NULL)
            n = 0;
        else {
            assert(PyTuple_Check(co->co_freevars));
            n = PyTuple_GET_SIZE(co->co_freevars);
        }
        for (i = 0; i < n; i++) {
            PyObject *name = PyTuple_GET_ITEM(co->co_freevars, i);
            assert(PyUnicode_Check(name));
            if (!PyUnicode_CompareWithASCIIString(name,
                                                  "__class__")) {
                Py_ssize_t index = co->co_nlocals +
                    PyTuple_GET_SIZE(co->co_cellvars) + i;
                PyObject *cell = f->f_localsplus[index];
                if (cell == NULL || !PyCell_Check(cell)) {
                    PyErr_SetString(PyExc_SystemError,
                      "super(): bad __class__ cell");
                    return -1;
                }
                type = (PyTypeObject *) PyCell_GET(cell);
                if (type == NULL) {
                    PyErr_SetString(PyExc_SystemError,
                      "super(): empty __class__ cell");
                    return -1;
                }
                if (!PyType_Check(type)) {
                    PyErr_Format(PyExc_SystemError,
                      "super(): __class__ is not a type (%s)",
                      Py_TYPE(type)->tp_name);
                    return -1;
                }
                break;
            }
        }
        if (type == NULL) {
            PyErr_SetString(PyExc_SystemError,
                            "super(): __class__ cell not found");
            return -1;
        }
    }

    if (obj == Py_None)
        obj = NULL;
    if (obj != NULL) {
        obj_type = supercheck(type, obj);
        if (obj_type == NULL)
            return -1;
        Py_INCREF(obj);
    }
    Py_INCREF(type);
    su->type = type;
    su->obj = obj;
    su->obj_type = obj_type;
    return 0;
}

PyDoc_STRVAR(super_doc,
"super() -> same as super(__class__, <first argument>)\n"
"super(type) -> unbound super object\n"
"super(type, obj) -> bound super object; requires isinstance(obj, type)\n"
"super(type, type2) -> bound super object; requires issubclass(type2, type)\n"
"Typical use to call a cooperative superclass method:\n"
"class C(B):\n"
"    def meth(self, arg):\n"
"        super().meth(arg)\n"
"This works for class methods too:\n"
"class C(B):\n"
"    @classmethod\n"
"    def cmeth(cls, arg):\n"
"        super().cmeth(arg)\n");

static int
super_traverse(PyObject *self, visitproc visit, void *arg)
{
    superobject *su = (superobject *)self;

    Py_VISIT(su->obj);
    Py_VISIT(su->type);
    Py_VISIT(su->obj_type);

    return 0;
}

PyTypeObject PySuper_Type = {
    PyVarObject_HEAD_INIT(&PyType_Type, 0)
    "super",                                    /* tp_name */
    sizeof(superobject),                        /* tp_basicsize */
    0,                                          /* tp_itemsize */
    /* methods */
    super_dealloc,                              /* tp_dealloc */
    0,                                          /* tp_print */
    0,                                          /* tp_getattr */
    0,                                          /* tp_setattr */
    0,                                          /* tp_reserved */
    super_repr,                                 /* tp_repr */
    0,                                          /* tp_as_number */
    0,                                          /* tp_as_sequence */
    0,                                          /* tp_as_mapping */
    0,                                          /* tp_hash */
    0,                                          /* tp_call */
    0,                                          /* tp_str */
    super_getattro,                             /* tp_getattro */
    0,                                          /* tp_setattro */
    0,                                          /* tp_as_buffer */
    Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC |
        Py_TPFLAGS_BASETYPE,                    /* tp_flags */
    super_doc,                                  /* tp_doc */
    super_traverse,                             /* tp_traverse */
    0,                                          /* tp_clear */
    0,                                          /* tp_richcompare */
    0,                                          /* tp_weaklistoffset */
    0,                                          /* tp_iter */
    0,                                          /* tp_iternext */
    0,                                          /* tp_methods */
    super_members,                              /* tp_members */
    0,                                          /* tp_getset */
    0,                                          /* tp_base */
    0,                                          /* tp_dict */
    super_descr_get,                            /* tp_descr_get */
    0,                                          /* tp_descr_set */
    0,                                          /* tp_dictoffset */
    super_init,                                 /* tp_init */
    PyType_GenericAlloc,                        /* tp_alloc */
    PyType_GenericNew,                          /* tp_new */
    PyObject_GC_Del,                            /* tp_free */
};

Вы можете видеть, что в super_init в какой-то момент есть проверка type == NULL, а затем возникает ошибка, которую вы видите. Наличие NULL не является нормальным, поэтому, вероятно, где-то в super есть ошибка (и обратите внимание, что в предыдущих версиях super уже были ошибки). По крайней мере, я думал, что случаи, в которых возникает SystemError, должны запускаться только из-за некоторого «внутреннего» сбоя интерпретатора или какого-либо другого кода C, а не из кода python.

Кроме того, это случилось не только с вами, вы можете найти пост, в котором такое поведение считается ошибкой.

person Bakuriu    schedule 29.10.2012
comment
Спасибо за размещение ссылки на пост - это действительно похоже на ошибку. - person Wojciech Danilo; 04.11.2012
comment
Прочитав то, что я должен придумать для своего ответа ниже, я понял, что это на самом деле ошибка - в пакете pyutilib, а не в Python. Это должно быть решено путем перемещения их одноэлементного экземпляра в метакласс __call__ вместо его метода __new__. - person jsbueno; 19.02.2015

TL;DR: эта ошибка "empty __class__ cell" произойдет, когда метакласс попытается вызвать метод в определенном классе (или создать его экземпляр) до того, как это будет сделано с его __new__ и __init__, а вызываемый метод использует super. Ошибка также произойдет, если написать вызов super() в функции, определенной вне тела класса, и попытаться добавить этот метод в существующий класс и использовать его. (обновление: это поведение было исправлено в Python 3.6)

Python 3 super делает неявную ссылку на «волшебное» имя __class__[*], которое ведет себя как переменная ячейки в пространстве имен каждого метода класса.

Эта переменная создается автоматически в конце механизма создания класса — т. е. всякий раз, когда в Python есть тело класса, запускаются __new__ и __init__ метакласса — когда __init__ завершается, ячейка __class__ заполняется и создается доступны для методов класса.

Что здесь происходит, так это то, что скорее всего (я не смотрел весь код) в коде инициализации PluginMeta вызывается __init__ класса, до конца метакласса __init__ - так как одна из точек этого метакласса обрабатывает синглтоны - что может произойти, так это то, что механизм метакласса создает экземпляр единственного экземпляра и заполняет __instance__ перед возвратом из метакласса __init__. Неявный __class__, используемый super, на данный момент не существует.

Таким образом, ссылка на суперкласс по жестко закодированному имени, как это нужно было делать до super в Python2, будет работать - и это лучший способ добиться того, чего вы хотите.

*- Это не атрибут self.__class__ экземпляра, это переменная __class__, доступная внутри методов:

class A:
   def a(self):
      print ("Instance's class: {}, "
             "actual class where this line is coded: {}".format(
                 self.__class__, __class__))

class B(A):
   pass

И запустив это, мы имеем:

>>> B().a()
Instance's class: <class '__main__.B'>, actual class where this line is coded: <class '__main__.A'>
>>> 

Из модели данных Python:

__class__ — это неявная ссылка на замыкание, созданная компилятором, если какие-либо методы в теле класса ссылаются либо на __class__, либо на super. Это позволяет форме super() с нулевым аргументом правильно идентифицировать класс, определяемый на основе лексической области видимости, в то время как класс или экземпляр, который использовался для выполнения текущего вызова, идентифицируется на основе первого аргумента, переданного в метод.

Для получения дополнительной информации см. PEP 3135.

person jsbueno    schedule 19.02.2015