Преобразуване на мрежата от централни координати към външни (т.е. ъглови) координати

Има ли лесно достъпен метод за екстраполиране на позициите на ъглите на мрежата (сини точки) от централните позиции на мрежата (червени точки)?

Мрежата, с която работя, не е правоъгълна, така че редовната двулинейна интерполация не изглежда като най-добрия начин; но това е само за да начертая моите данни да използват pyplot.pcolormesh(), така че може би това няма толкова голямо значение.

въведете описание на изображението тук

Примерни мрежови данни:

import numpy as np

lons = np.array([[ 109.93299681,  109.08091365,  108.18301276,  107.23602539],
                 [ 108.47911382,  107.60397996,  106.68325946,  105.71386119],
                 [ 107.06790187,  106.17259769,  105.23214707,  104.2436463 ],
                 [ 105.69908292,  104.78633156,  103.82905363,  102.82453812]])

lats = np.array([[ 83.6484245 ,  83.81088466,  83.97177823,  84.13098916],
                 [ 83.55459198,  83.71460466,  83.87294803,  84.02950188],
                 [ 83.4569054 ,  83.61444708,  83.77022192,  83.92410637],
                 [ 83.35554612,  83.51060313,  83.6638013 ,  83.81501464]])

person ryanjdillon    schedule 26.03.2014    source източник


Отговори (2)


Не знам за някаква стабилна техника на matplotlib за извършване на това, което питате, но може да имам различно решение. Често ми се налага да попълвам/екстраполирам в области от мрежата, където ми липсва информация. За да направя това, използвам програма Fortran, която компилирам с помощта на F2PY (която се доставя с numpy), която я създава в модул на Python. Ако приемем, че имате компилатора на Intel Fortran, вие го компилирате със следната команда: f2py --verbose --fcompiler=intelem -c -m extrapolate fill.f90. Можете да извикате програмата от python с (вижте тук за пълен пример) :

    import extrapolate as ex
    undef=2.0e+35
    tx=0.9*undef
    critx=0.01
    cor=1.6
    mxs=100

    field = Zg
    field=np.where(abs(field) > 50 ,undef,field)

    field=ex.extrapolate.fill(int(1),int(grdROMS.xi_rho),
                            int(1),int(grdROMS.eta_rho),
                            float(tx), float(critx), float(cor), float(mxs),
                            np.asarray(field, order='Fortran'),
                            int(grdROMS.xi_rho),
                            int(grdROMS.eta_rho))

Програмата решава уравнението на Лаплас с гранични условия на Нойман (dA/dn = 0) в ПРАВОЪГЪЛНИ координати чрез итеративен метод за попълване на разумни стойности в точки на мрежата, съдържащи стойности като "undef". Това работи чудесно за мен и може би ще ви бъде полезно. Програмата е достъпна в моя акаунт в github тук.

person Trond Kristiansen    schedule 26.03.2014
comment
Не знаех за F2PY. Това със сигурност може да бъде полезно и за някои други неща. Извежда се от моя модул за модела NORWECOM.e2e, който чертая. Ще изчакам други данни, за да видя какво може да има там. Благодаря! - person ryanjdillon; 26.03.2014
comment
F2PY е невероятен, ако искате да ускорите части от кода си, като например вложени цикли. Всъщност аз самият работя върху norwecom.e2e и знам, че може да бъде предизвикателство. - person Trond Kristiansen; 26.03.2014

Това е не толкова елегантният подход, който предприех с помощта на pyproj, за да изчисля първо разстоянието и азимута между точките (с pyproj.Geod.inv, след което интерполирам/екстраполирам този ъгъл с необходимото разстояние (с pyproj.Geod.fwd) до пси позицията.

код:

def calc_psi_coords(lons, lats):
    ''' Calcuate psi points from centered grid points'''

    import numpy as np
    import pyproj

    # Create Geod object with WGS84 ellipsoid
    g = pyproj.Geod(ellps='WGS84')

    # Get grid field dimensions
    ydim, xdim = lons.shape

    # Create empty coord arrays
    lons_psi = np.zeros((ydim+1, xdim+1))
    lats_psi = np.zeros((ydim+1, xdim+1))

    # Calculate internal points
    #--------------------------
    for j in range(ydim-1):
        for i in range(xdim-1):
            lon1 = lons[j,i]     # top left point
            lat1 = lats[j,i]
            lon2 = lons[j+1,i+1] # bottom right point
            lat2 = lats[j+1,i+1]
            # Calc distance between points, find position at half of dist
            fwd_az, bck_az, dist = g.inv(lon1,lat1,lon2,lat2)
            lon_psi, lat_psi, bck_az = g.fwd(lon1,lat1,fwd_az,dist*0.5)
            # Assign to psi interior positions
            lons_psi[j+1,i+1] = lon_psi
            lats_psi[j+1,i+1] = lat_psi

    # Caclulate external points (not corners)
    #----------------------------------------
    for j in range(ydim):
        # Left external points
        #~~~~~~~~~~~~~~~~~~~~~
        lon1 = lons_psi[j+1,2] # left inside point
        lat1 = lats_psi[j+1,2]
        lon2 = lons_psi[j+1,1] # left outside point
        lat2 = lats_psi[j+1,1]
        # Calc dist between points, find position at dist*2 from pos1
        fwd_az, bck_az, dist = g.inv(lon1,lat1,lon2,lat2)
        lon_psi, lat_psi, bck_az = g.fwd(lon1,lat1,fwd_az,dist*2.)
        lons_psi[j+1,0] = lon_psi
        lats_psi[j+1,0] = lat_psi

        # Right External points
        #~~~~~~~~~~~~~~~~~~~~~~
        lon1 = lons_psi[j+1,-3] # right inside point
        lat1 = lats_psi[j+1,-3]
        lon2 = lons_psi[j+1,-2] # right outside point
        lat2 = lats_psi[j+1,-2]
        # Calc dist between points, find position at dist*2 from pos1
        fwd_az, bck_az, dist = g.inv(lon1,lat1,lon2,lat2)
        lon_psi, lat_psi, bck_az = g.fwd(lon1,lat1,fwd_az,dist*2.)
        lons_psi[j+1,-1] = lon_psi
        lats_psi[j+1,-1] = lat_psi

    for i in range(xdim):
        # Top external points
        #~~~~~~~~~~~~~~~~~~~~
        lon1 = lons_psi[2,i+1] # top inside point
        lat1 = lats_psi[2,i+1]
        lon2 = lons_psi[1,i+1] # top outside point
        lat2 = lats_psi[1,i+1]
        # Calc dist between points, find position at dist*2 from pos1
        fwd_az, bck_az, dist = g.inv(lon1,lat1,lon2,lat2)
        lon_psi, lat_psi, bck_az = g.fwd(lon1,lat1,fwd_az,dist*2.)
        lons_psi[0,i+1] = lon_psi
        lats_psi[0,i+1] = lat_psi

        # Bottom external points
        #~~~~~~~~~~~~~~~~~~~~~~~
        lon1 = lons_psi[-3,i+1] # bottom inside point
        lat1 = lats_psi[-3,i+1]
        lon2 = lons_psi[-2,i+1] # bottom outside point
        lat2 = lats_psi[-2,i+1]
        # Calc dist between points, find position at dist*2 from pos1
        fwd_az, bck_az, dist = g.inv(lon1,lat1,lon2,lat2)
        lon_psi, lat_psi, bck_az = g.fwd(lon1,lat1,fwd_az,dist*2.)
        lons_psi[-1,i+1] = lon_psi
        lats_psi[-1,i+1] = lat_psi

    # Calculate corners:
    #-------------------
    # top left corner
    #~~~~~~~~~~~~~~~~
    lon1 = lons_psi[2,2] # bottom right point
    lat1 = lats_psi[2,2]
    lon2 = lons_psi[1,1] # top left point
    lat2 = lats_psi[1,1]
    # Calc dist between points, find position at dist*2 from pos1
    fwd_az, bck_az, dist = g.inv(lon1,lat1,lon2,lat2)
    lon_psi, lat_psi, bck_az = g.fwd(lon1,lat1,fwd_az,dist*2.)
    lons_psi[0,0] = lon_psi
    lats_psi[0,0] = lat_psi
    # top right corner
    #~~~~~~~~~~~~~~~~~
    lon1 = lons_psi[2,-3] # bottom left point
    lat1 = lats_psi[2,-3]
    lon2 = lons_psi[1,-2] # top right point
    lat2 = lats_psi[1,-2]
    # Calc dist between points, find position at dist*2 from pos1
    fwd_az, bck_az, dist = g.inv(lon1,lat1,lon2,lat2)
    lon_psi, lat_psi, bck_az = g.fwd(lon1,lat1,fwd_az,dist*2.)
    lons_psi[0,-1] = lon_psi
    lats_psi[0,-1] = lat_psi
    # bottom left corner
    #~~~~~~~~~~~~~~~~~~~
    lon1 = lons_psi[-3,2] # top right point
    lat1 = lats_psi[-3,2]
    lon2 = lons_psi[-2,1] # bottom left point
    lat2 = lats_psi[-2,1]
    # Calc dist between points, find position at dist*2 from pos1
    fwd_az, bck_az, dist = g.inv(lon1,lat1,lon2,lat2)
    lon_psi, lat_psi, bck_az = g.fwd(lon1,lat1,fwd_az,dist*2.)
    lons_psi[-1,0] = lon_psi
    lats_psi[-1,0] = lat_psi
    # bottom right corner
    #~~~~~~~~~~~~~~~~~~~~
    lon1 = lons_psi[-3,-3] # top left point
    lat1 = lats_psi[-3,-3]
    lon2 = lons_psi[-2,-2] # bottom right point
    lat2 = lats_psi[-2,-2]
    # Calc dist between points, find position at dist*2 from pos1
    fwd_az, bck_az, dist = g.inv(lon1,lat1,lon2,lat2)
    lon_psi, lat_psi, bck_az = g.fwd(lon1,lat1,fwd_az,dist*2.)
    lons_psi[-1,-1] = lon_psi
    lats_psi[-1,-1] = lat_psi

    return lons_psi, lats_psi

Примерно изображение (около Дания/южна Швеция):

въведете описание на изображението тук

person ryanjdillon    schedule 31.03.2014